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We present the path integral approach to quantum mechanics and show its equivalence to the
Schrödinger picture. We apply the method to a general case, a free particle and harmonic oscillator.
Then we discuss propagators in imaginary time and many possibilities and insight brought by this
change.

I. INTRODUCTION

The fundamental problem we try to solve in quantum
mechanics is to find the time evolution of a state. In order
to do that multiple approaches have been developed in
the early twentieth century. In 1926 Erwin Schrödinger
published a paper [1] in which he postulated a differ-
ential equation which was to govern the wave function
of a quantum mechanical system. In Schrödinger’s for-
mulation the Hamiltonian and its eigenstates are in the
limelight. Their time evolution is easy to find as they are
stationary. Another well known approach was introduced
a year earlier by Werner Heisenberg who based his formu-
lation on matrix algebra, shifting the time dependence to
the operators.
We know that in classical mechanics the Lagrangian
and Hamiltonian approaches are proven to be equivalent.
Hence, a question arises: can we construct a formula-
tion based on Lagrangians which would be equivalent to
Schrödinger’s? In 1932 Paul Dirac published a paper in
which he had shown how Lagrangians appear naturally in
quantum mechanics. He defined a transition probability
amplitude as an inner product of a Schrödinger picture
wave function evaluated at a starting point and a possi-
ble future point. This has inspired Feynman to seek a
correlation between this probability amplitude and the
exponent of classical action.
It wasn’t until 1948 than Feynman finally formalised his
intuition in his paper [2]. His idea was that the time
evolution of a state can be found by summing Dirac’s
transition probability amplitudes over all possible points
of the trajectory of a particle:

|Ψ (x, t)⟩ =

∫ ∞

−∞
⟨Ψ (x′, t) |Ψ (xi, ti)⟩ dx′ |Ψ (x′, t)⟩ (1)

In Zee’s well known QFT textbook it is presented as a
solution of double slit experiment expanded into infinitely
many screens with infinitely many slits [3].
We’re going to derive a propagator for a general case.
Then we will fix the normalization with the help of the
propagator for a free particle. We will also apply the path
integral method to a simple harmonic oscillator. At the
end we will discuss the advantages and drawbacks of the
path integral approach.

II. GENERAL CASE

A propagator specifies the probability amplitude for a
particle to travel from one point to another in a given time
or to be travelling with specific momentum and energy.
It is calculated by taking an inner product of Heisenberg
picture wave functions evaluated at the starting point
and one evaluated at a possible future point. One can
understand it as the probability amplitude of a state to
evolve in a specific way in a specific time interval.
First, we would like to calculate the propagator for a

general case: H = p̂2

2m + V (x̂). The quantity we want to
obtain is

K = ⟨xf , tf |xi, ti⟩

= ⟨xf | e−
i
ℏH(tf−ti) |xi⟩

=

∫
dxN−1 . . . dx1

∫
dpN−1 . . . dp0

× ⟨xf |pN−1⟩ ⟨pN−1| e−
i
ℏH

tf−ti
ℏ |xN−1⟩ . . . (2)

where we have inserted resolution of identity N − 1 times.
Let’s find an element of the integrand sandwiched between
(N − 1)th states

KN−1 = ⟨pN−1| e−
i
ℏH∆t |xN−1⟩

= ⟨pN−1| e−
i
ℏ

p̂2

2m∆te−
i
ℏV (x̂)∆t |xN−1⟩

where ∆t =
tf−ti
N . We used Baker-Campbell-Hausdorff

formula and the fact that

e−
1
2 [p̂

2,V (x̂)] = 1 + O[(∆t)
2
] ≈ 1

for small ∆t. We replace the operators with their eigen-
values

KN−1 = ⟨pN−1| e−
i
ℏ

p2N−1
2m ∆te−

i
ℏV (xN−1)∆t |xN−1⟩

= exp

[
− i

ℏ

(
p2N−1

2m
+ V (xN−1)

)
∆t

]
⟨pN−1|xN−1⟩
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We use this to calculate an important part of K:∫ ∞

−∞
dpN−1 ⟨xf |pN−1⟩KN−1 =

=

∫ ∞

−∞
dpN−1

1√
2πℏ

e
i
ℏpN−1xf

× exp

(
− i

ℏ

(
p2N−1

2m
+ V (xN−1)

)
∆t

)
⟨xN−1|pN−1⟩

=
1

2πℏ

[∫ ∞

−∞
dpN−1e

− i∆t
2ℏmp2

N−1+
i
ℏ (xf−xN−1)pN−1

]
× e−

i
ℏV (xN−1)∆t

remembering that ⟨x|p⟩ = 1√
2πℏe

− i
ℏpx. We recognize this

expression as an easily soluble Gaussian integral. We get
then

KN−1 =

√
−im

2πℏ
1

∆t

× exp

[
− i

ℏ

(
m

2

(
xf − xN−1

∆t

)2

+ V (xN−1)

)]
(3)

We can finally plug (3) into (2). After doing some inte-
grations we see a pattern which leads us to

K =

∫ ∞

−∞
. . .

∫ ∞

−∞
dx1 . . . dxN−1

(
−im

2πℏ∆t

)N
2

×
N−1∏
i=1

exp

(
− i

ℏ

(
m

2

(
xi+1 − xi

∆t

)2

+ V (xi)

)
∆t

)

=

∫ ∞

−∞
. . .

∫ ∞

−∞
dx1 . . . dxN−1

(
−im

2πℏ∆t

)N
2

× exp

[
N−1∑
i=1

(
− i

ℏ

(
m

2

(
xi+1 − xi

∆t

)2

+ V (xi)

))
∆t

]

The explicit derivation of the above can be found in
Feynman and Hibbs [4]. Next we would like to take the
limit N → ∞ but one thing is bothering us. We know

that the factor of
√

1
(2πi)N

will not look pretty in the

limit. The only way we can secure the convergence is to
fix the normalization in a proper way. We will do that
later in the text (9). As a result our propagator is

K =

∫ ∞

−∞
D [x (t)] e−

i
ℏ
∫ ∞
−∞( 1

2mẋ2+V (x))dt (4)

where we defined∫ ∞

−∞
D [x (t)] = lim

N→∞

∫ ∞

−∞
. . .

∫ ∞

−∞
dx1 . . . dxN−1

×
(

−im

2πℏ∆t

)N
2

III. EQUIVALENCE TO SCHRÖDINGER’S
EQUATION

Now that we are familiar with the new method we must
ask ourselves if it really is a picture equivalent to non-
relativistic quantum mechanics we know. Let’s attempt
to recreate Schrödinger’s equation starting out from the
path integral

⟨xf , tf |xi, ti⟩ =

∫
D [x (t)] e

i
ℏS[x(t)] (5)

Let’s now shift the trajectory by a small amount δx,
keeping xi fixed (so that δxi = 0) and varying xf . Let’s
see how both sides of (5) change. Left hand side:

⟨xf + δxf , tf |xi, ti⟩ − ⟨xf , tf |xi, ti⟩

=
∂

∂xf
⟨xf , tf |xi, ti⟩ δx(tf )

On the other hand:∫
D [x (t)] e

i
ℏS[x(t)+δx(t)] −

∫
D [x (t)] e

i
ℏS[x(t)]

=

∫
Dx (t) e

i
ℏS[x(t)] iδS

ℏ
(6)

From Classical Mechanics we know that the action changes
by

δS = S[x(t) − δx(t)] − S[x(t)]

=

∫ tf

ti

dt

(
∂L
∂x

δx +
∂L
∂ẋ

δẋ

)
=

∂L
∂ẋ

δx (t)

∣∣∣∣tf
ti

+

∫ tf

ti

(
∂L
∂x

− d

dt

∂L
∂ẋ

)
δx

Recalling Euler-Lagrange equation we see that the second
part is equal to zero. We are thus left with

δS =
∂L
∂ẋ

δx(tf ) = p(tf )δx(tf )

knowing that p (t) = ∂L
∂ẋ . Dropping the δx(tf ) and plug-

ging δS into (6) we get:

∂

∂xf
⟨xf , tf |xi, ti⟩ =

∫
D [x (t)] e

i
ℏS[x(t)] i

ℏ
p (tf ) (7)

We see that we obtain the value of the momentum at tf by

taking a partial derivative ∂
∂xf

of the propagator. Using

our knowledge of Classical Mechanics again we obtain
the Hamiltonian by varying the action with respect to tf .
Thus we have

∂

∂tf
⟨xf , tf |xi, ti⟩ =

∫
D [x (t)] e

i
ℏS[x(t)]

(
− i

ℏ
H(tf )

)
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If H = p̂2

2m + V (x̂) we can rewrite the momentum using
(7) to get

iℏ
∂

∂tf
⟨xf , tf |xi, ti⟩ =(

1

2m

(
ℏ
i

∂

∂xf

)2

+ V (xf )

)
⟨xf , tf |xi, ti⟩

which we recognise as the well known Schrödinger
Equation. Hence we have shown that the path in-
tegral formulation conveys the same information as
non-relativistic quantum mechanics.

There is also a much easier, almost trivial, way to
prove the equivalence. To do that we need to express the
propagator using energy eigenstate expansion.

K = ⟨x| e− i
ℏH(tf−ti) |x′⟩

=
∞∑

n=1

⟨x|n⟩ ⟨n| e− i
ℏH(tf−ti) |x′⟩

=

∞∑
n=1

ϕn (x)ϕ∗
n (x′) e−

i
ℏEn(tf−ti)

where ϕn (x) = 1√
2πℏe

i
ℏpx. Now we have to show that K

satisfies the Schrödinger’s equation:[
i

ℏ
∂

∂t
+

1

2m

∂2

∂x2

]
K = 0

which is easily shown.

IV. FREE PARTICLE

Let’s take a look at the simplest possible example - a
free particle moving in one dimension. Let’s discretise the
path by dividing ∆t into N pieces, so that the in-between
points are (x1, t1) , . . . , (xN−1, tN−1). We identify xi = x0

and xf = xN . We do this for the chunks of the trajectory
to form a continuous path in the N → ∞ limit. As
V (x̂) = 0 the action depends just on the velocity of the
particle. Let’s find the action between tn and tn+1:

Sn =

∫ tn+1

tn

m

2
ẋ (t) dt =

m

2

(
xn+1 − xn

tn+1 − tn

)2

(tn+1 − tn)

=
m

2

(xn+1 − xn)
2

∆t

We will plug in the action as S =
∑N

n=1 Sn. Now to get
the propagator we must vary all xn at every tn over the
whole continuum.

⟨xf , tf |xi, ti⟩ = C (t)

∫ ∞

−∞
. . .

∫ ∞

−∞
dx1 . . . dxN−1

exp

(
i

ℏ
m

2

1

N∆t

N∑
n=1

(xn+1 − xn)
2

)
(8)

where we denote the normalization constant as C (t),
which is dependent only on the elapsed time ∆t. To
integrate (8) that we will use the same trick as in the
general case - we are going to integrate over just one of
the variables. Let’s conveniently choose to integrate over
x1 ∫ ∞

−∞

(
k
(
x2
2 − x2

1

)
+ k

(
x2
1 − x2

0

))
dx1

=

√
π

2k
e

k
2 (x0−x2)

2

where we’ve set k = i
ℏ
m
2

1
N∆t for convenience. We also

omitted some constant terms as they can be absorbed into
C (t). After integrating a few more times we see a pattern
(which is shown in [4] explicitly): after n integrations a

factor of k
n+1 (xn − x0)

2
shows up in the exponential. We

use this fact and recall that N∆t = tf − ti to rewrite (8)
as

⟨xf , tf |xi, ti⟩ = C (tf − ti) e
k
N (xf−xi)

2

So the propagator for a free particle for an elapsed time t
is

⟨x, t|xi, ti⟩ = C (t) e
im
2tℏ (x−xi)

2

(9)

We obtain C (t) by normalizing (9) over all x, keeping t
constant. We get then

⟨x, t|xi, ti⟩ =

√
m

i2πℏt
e

im
2tℏ (x−xi)

2

(10)

We fix C (t) to be the normalization constant for the
path integral in general. Its rigorous derivation involving
Green’s functions can be found in chapter 13.3 of [7].

V. HARMONIC OSCILLATOR

Let us now take a look at path integral approach to a
harmonic oscillator which is quite an elucidating example.
We want to find the probability amplitude for a situation,
where we leave a particle in the minimum of the harmonic
potential at xi = 0 and after measuring its position after
a time t = T we find it in the same place. Thus, we need
to find a propagator

KSHO = ⟨xf = 0, tf = T |xi = 0, ti = 0⟩

=

∫ x=0,t=T

x=0,t=0

D [x (t)]

exp

(
i

ℏ

∫ t=T

t=0

[
m

2
ẋ2 − 1

2
mω2x2

]
dt

)

Let us first take a look at the propagator for a harmonic
oscillator in general.
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We now need to find the classical trajectory. We start off
by writing the general solution:

x (t) = A cosωt + B sinωt

To find A and B we set x (ti) = xi and x (tf ) = xf . We
get then {

xi = A cosωti + B sinωti
xf = A cosωtf + B sinωtf

{
A = xi−B sinωti

cosωti

B =
xf cosωti−xi cosωtf

1
2 sin(ω(tf−ti))

After some algebraic operations the classical path turns
out to be

xc (t) = xi
sin (ω (tf − t))

sin (ω (tf − ti))
+ xf

sin (ω (t− ti))

sin (ω (tf − ti))

The action integral then looks like

Sc =

∫ tf

ti

dt

(
1

2
mẋc

2 − 1

2
mω2x2

c

)
=

1

2
m

∫ tf

ti

dt
(
ẋc

2 − ω2x2
c

)
=

1

2
m

(∫ tf

ti

dtẋcẋc − ω2

∫ tf

ti

dtxcxc

)
We now integrate the first expression by parts:

Sc =
1

2
m

(
ẋcxc

∣∣∣∣tf
ti

−
∫ tf

ti

dtxcẍc − ω2

∫ tf

ti

dtxcxc

)

ẍc would normally bother us but we know that in the
case of a simple harmonic oscillator ẍ = −ω2x. Using
this we find the classical action to be

Sc =
1

2
m

(
ẋcxc

∣∣∣∣tf
ti

−
∫ tf

ti

dtxc

(
−ω2xcxc

)
− ω2

∫ tf

ti

dtxcxc

)

=
1

2
mẋcxc

∣∣∣∣tf
ti

Sc =
1

2
mω

(
x2
i + x2

f

)
cos (ω (tf − t)) − 2xixf

sin (ω (tf − ti))
(11)

We can write x (t) = xc (t) + δx (t), where the quantum
fluctuation δx (t) must vanish at the initial and final time.
We can thus expand δx (t) in Fourier series around xc (t)
following the derivation in [5] and get

S = Sc + δS = Sc +

∞∑
n=1

m

2

(
(nπ)

2

tf − ti
− ω2 (tf − ti)

)
a2n
2

We plug action into the propagator as an integral over all
coefficients an:

⟨xf , tf |xi, ti⟩ = e
i
ℏSc

√
m

2πiℏ (tf − ti)√
m

2πiℏ (tf − ti)

nπ√
2

∫
dan

exp

[
i

ℏ

∞∑
n=1

m

2

(
(nπ)

2

tf − ti
− ω2 (tf − ti)

)
a2n
2

]

Where we used the normalization constant fixed in the
previous section.
After integrating we get

⟨xf , tf |xi, ti⟩ = e
i
ℏSc

√
m

2πiℏ (tf − ti)

∞∏
n=1

(
1 −

(
ω (tf − ti)

nπ

)2
)− 1

2

We recognize the latter term as an infinite product repre-
sentation of a sinc function:

∞∏
n=1

(
1 −

ω2

π2 (tf − ti)
2

n2

)
=

sin (ω (tf − ti))

ω (tf − ti)

So we find the propagator to be

⟨xf , tf |xi, ti⟩ = e
i
ℏSc

√
m

2πiℏ (tf − ti)

√
ω (tf − ti)

sin (ω (tf − ti))

=

√
m

2πiℏ
e

i
ℏSc

√
ω

sin (ω (tf − ti))
(12)

Now, having calculated the propagator, let us revisit the
situation from the beginning of this section. We realise
that Sc = 0 for this case, so the propagator will be

⟨xf = 0, tf = T |xi = 0, ti = 0⟩ =

√
ω

sinωT

Now we know the probability to find a particle left in the
minimum of the harmonic potential in the same place
after a time T !

Note that after we take the limit of ω → 0 of KSHO we
end up with

lim
ω→0

KSHO =√
m

2πiℏ
e

i
ℏSc lim

ω→0

√
ω (tf − ti)

sin (ω (tf − ti))

√
1

(tf − ti)

=

√
m

2πiℏ (tf − ti)
e

i
ℏSc

which is, as we would expect, the propagator for a free
particle!
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VI. IMAGINARY TIME

We should note that the path integral is not a rigorously
defined object. The issue occurs when we try to deal with
paths rapidly oscillating around the classical path. Such
rapid oscillations can cause convergence issues. They
are in general not pleasant to deal with unless we define
imaginary time τ = it. This step, known as Wick rotation,
is not easy to justify so it will not be covered here. It is
based on some characteristics shared by both Minkowski
measure and Euclidean measure. An interested reader
may refer to section 11.5 of [7] or section 14 of [8]. Let
us take a look at a propagator over a small time interval
−iτ

Kim ≈
∑

all paths

e
i
ℏ

[
m
2

(x′−x)2

−iτ +(−iτ)V
(

x+x′
2

)]

We can see that the potential has changed its sign relative
to the kinetic energy term. Let’s then define the Euclidean
action as

SE [x (τ)] =

∫ τf

τi

dτ
[m

2
ẋ2 (τ) + V (x (τ))

]
We can then define the imaginary time propagator

Kim = C (τ)

∫
all paths

exp

(
−1

ℏ
SE [x (τ)]

)
Instead of causing oscillation, deviations from the classical
path contribute as an average weighted by their Euclidean
action! The classical path will dominate, as action along
it is minimized.

Let us now write a propagator in imaginary time using
energy eigenstate expansion:

Kim = ⟨x′| e− i
ℏH(−iτ) |x⟩

=
∑
n

⟨x′|n⟩ ⟨n| e− 1
ℏHτ |x⟩

=
∑
n

⟨x′|n⟩ e− 1
ℏEnτ ⟨n|x⟩

Now if we set x = x′ and integrate over all x∫ ∞

−∞
dxKim =

∑
n

⟨n|
∫ ∞

−∞
dxe−

1
ℏEnτ |x⟩ ⟨x|n⟩

=
∑
n

e−
τ
ℏEn (13)

Note that this result resembles the partition function
known from statistical mechanics Z =

∑
n e

−βEn , where
β = 1

kbT
.

Let us now consider the imaginary time propagator for

a simple harmonic oscillator:

Kim SHO = ⟨x′| e− 1
ℏHτ |x⟩

=
∑
n

⟨x′|n⟩ ⟨n| e−ω(n+ 1
2 )τ |x⟩

=
∑
n

ϕn (x)ϕ∗
n (x′) e−ω(n+ 1

2 )τ

Now if we redo the step from (13) we obtain∫ ∞

−∞
dxKim SHO =

∑
n

e−ω(n+ 1
2 )τ

= e−τ ω
2

∑
n

e−(τω)n

= e−τ ω
2

1

1 − e−τω

=
1

2 sinh
(
ωτ
2

)
Note that if we use τ = it we get∫ ∞

−∞
dxKim SHO,τ→it =

1

2i sin
(
ωt
2

) (14)

We check that this is true by solving the left-hand side of
above expression. We recall (11) and rewrite it to fit our
goal, setting xi = xf = x:

SC =
1

2m

2x2 cos (ω (tf − t)) − 2x2

sin (ω (tf − ti))

=
mω [cos (ω (tf − t)) − 1]x2

sin (ω (tf − ti))

=
−2mω sin2

(
ω(tf−t)

2

)
x2

sin (ω (tf − ti))

Where we used the identity cosx − 1 = −2 sin2 x
2 . We

now plug this into KSHO.∫ ∞

−∞
dxKSHO =

√
m

2πiℏ

√
ω

sin (ω (tf − ti))

∫ ∞

−∞
dxe

i
ℏSC

=

√
m

2πiℏ

√
ω

sin (ω (tf − ti))

×

√√√√ πiℏ sin (ω (tf − ti))

−2mω sin2
(

ω(tf−t)
2

)
=

1

2

√√√√ 1

− sin2
(

ω(tf−t)
2

)
=

1

2i sin
(

ω(tf−t)
2

)
which is exactly the same as (14)!
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VII. CONCLUSION

In this paper we have introduced the path integral
formulation of quantum mechanics. There is a lot of
literature richer in mathematical rigour, such as [5] or
[6], while other resources put more focus on the physical
intuition as [3]. We tried to keep balance between both
approaches.
One of the most important drawbacks of this formulation
is the lack of mathematical rigour. Mathematicians
consider the path integral not to be a rigorously defined
object. Even though the discussed method is often
described as beautiful many find it too technical and
computation-heavy.
Feynman hoped this approach would help replace QED
with particle quantum mechanics. Even though this
method failed to serve its original purpose, it has proven
itself very useful as a different way to obtain classical
results in quantum mechanics. It has also turned out to
be very successful in quantum field theory as a second
formulation of the theory, along canonical quantization.
We have derived the general case propagator in a way
that illuminates the meaning behind summing over all
possible paths. We have shown the equivalence of this
method to the Schrödinger formulation. We have also

applied the path integral to a free particle, using this
simple example to fix the normalization of the integral.
Then we derived the probability amplitude to find a
particle in the minimum of the harmonic potential after
a time T .
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