HW1 due 27/10/2023

(+2 points if you solve the problems with Julia)

Q. 1

Root finding.

- There are many methods to find the roots of a function: e.g.
- just plot it.
- bisection.
- iterative method: Newton's, secant, etc.

Pick one and solve for the positive root of $f(x)=x^{2}-x-1$. Of course the quadratic formula tells us the solution is

$$
x=\frac{1 \pm \sqrt{5}}{2}
$$

(take the + root.) This is the Golden Mean.

- Show that the Golden Mean x satisfies

$$
x=1+1 / x
$$

This provides yet another numerical scheme to solve for it, via a recursive formula:

$$
\begin{aligned}
& x_{1} \rightarrow 1 \\
& x_{2} \rightarrow 1+1 / x_{1} \\
& x_{3} \rightarrow 1+1 / x_{2}
\end{aligned}
$$

$$
\ldots
$$

Write a recursive function to implement this scheme.

Q. 2

Finding inverses.

- Suppose we want to find the multiplicative inverse of a real number a. The answer is, of course, $1 / a$. A fancy way to put it is that we want to solve for x such that

$$
f(x)=1 / x-a=0 .
$$

This becomes a root finding problem. Shows that the Newton's method gives

$$
x_{n+1}=x_{n}\left(2-a x_{n}\right)
$$

Plug in numbers to verify that it is true.

- Show that the formula works also for finding an inverse of a matrix A.

$$
X_{n+1}=X_{n}\left(2 I-A X_{n}\right)
$$

Demonstrate this with a 2 x 2 matrix. (Not all will work, good luck!)

Q. 3

Complex \mathbf{i} as a 2 x 2 matrix.
If we represent the complex number " i " as

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

In Julia, you can write:
imat $=\left[\begin{array}{llll}0 & -1 ; ~ & 1 & 0\end{array}\right]$
Show how

$$
\begin{array}{r}
i^{2}=-1 \\
\exp (i \pi)=-1 \\
\exp (i \pi / 2)=i
\end{array}
$$

are realized.

Q. 4

- Write a program to compute the Gaussian integral:

$$
\int_{-\infty}^{\infty} d x e^{-A x^{2}}
$$

Check with the exact result

$$
\sqrt{\frac{\pi}{A}}
$$

- If we define

$$
\langle\hat{O p}\rangle=\frac{\int_{-\infty}^{\infty} d x e^{-(A / 2) x^{2}} O p(x) e^{-(A / 2) x^{2}}}{\int_{-\infty}^{\infty} d x e^{-A x^{2}}}
$$

Compute (numerically and analytically)

$$
\begin{aligned}
& \langle x\rangle \\
& \left\langle x^{2}\right\rangle \\
& \langle p\rangle=\left\langle-i \frac{d}{d x}\right\rangle \\
& \left\langle p^{2}\right\rangle=\left\langle-\frac{d^{2}}{d x^{2}}\right\rangle
\end{aligned}
$$

Show that

$$
\left(\left\langle p^{2}\right\rangle-\langle p\rangle^{2}\right) \times\left(\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right)=\frac{1}{4}
$$

Does it smell like quantum mechanics?

Q. 5

Consider the logistic map:

$$
x_{n+1}=r x_{n}\left(1-x_{n}\right) .
$$

- Produce the bifurcation diagram: for a given r within (0,4), iterate (starting from any initial value within $(0,1)$), collect the end point(s) and plot them as a function of r.
- Derive an analytic result for the stable end points within $r<3$. Plot it on top of the bifurcation diagram.
- For $r=3.6$, collect all the points $\left\{x_{j}\right\}$ from iterations and plot them in a normalized histogram. This is called the invariant density.
- Plot the invariant density at $r \rightarrow 4$. Compare with the analytic result:

$$
\rho(x)=\frac{1}{\pi \sqrt{x(1-x)}}
$$

