HW2 due 17/11/2023

$(+2$ points if you solve the problems with Julia + on time $)$

Q. 1

Pauli matrices.
The Pauli matrices are given by:

```
sigma1 = [ 0 1; 1 0 ]
sigma2 = [ 0 -im; im 0 ]
sigma3 = [ 1 0; 0 -1 ]
```

a) Prove the relations

$$
(\vec{\sigma} \cdot a)(\vec{\sigma} \cdot \vec{b})=\vec{a} \cdot \vec{b}+i \vec{\sigma} \cdot(\vec{a} \times \vec{b})
$$

and

$$
D(\phi, \hat{n})=e^{-i \frac{1}{2} \vec{\sigma} \cdot \hat{n} \phi}=\cos \frac{\phi}{2} I_{2}-i \sin \frac{\phi}{2} \vec{\sigma} \cdot \hat{n}
$$

(\hat{n} is a unit 3 -vector.)
Verify these with a program.
b) If we write

$$
D(\phi, \hat{n})=\left[\begin{array}{ll}
z 1 & z 2 \\
z 3 & z 4
\end{array}\right]
$$

what are the restrictions on the complex numbers $z_{1}, z_{2}, z_{3}, z_{4}$? How many degrees of freedom do we have?
c) Write a program to generate random $\mathrm{SU}(2)$ matrices, i.e. matrices like $D(\phi, \hat{n})$.
d) Write a program to compute the Levi-Civita symbol (3D) via

$$
\epsilon(i, j, k)=\frac{\operatorname{tr}\left\{\left[\sigma_{i}, \sigma_{j}\right], \sigma_{k}\right\}}{8 i} .
$$

(This is definitely one of the stupidest method.) Can you think of one other method to do this?

Q. 2

a) Starting with the commutation relation

$$
\left[x_{i}, p_{j}\right]=i \delta_{i j}
$$

and the definition of orbital angular momentum

$$
\vec{L}=\vec{x} \times \vec{p},
$$

derive the commutation relation for the latter, i.e.

$$
\left[L_{i}, L_{j}\right]=i \epsilon(i, j, k) L_{k} .
$$

b) Find the matrix representation of L_{z}, i.e. find the 3×3 matrix which brings about a rotation along the z -axis

$$
D(\phi,[0,0,1])=e^{-i L_{z} \phi}=\left[\begin{array}{ccc}
\cos (\phi) & -\sin (\phi) & 0 \\
\sin (\phi) & \cos (\phi) & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

The answer is
[0-im 0; im 0 0; 0000$]$
Verify this with a program. Also, find the eigenvalues of L_{z}.
c) Similarly, find L_{x}, L_{y}, and show that

$$
\left[L_{i}, L_{j}\right]=i \epsilon(i, j, k) L_{k} .
$$

and

$$
L^{2}=L_{x}^{2}+L_{y}^{2}+L_{z}^{2}=2 I .
$$

d) When two operators commute, we can find states which are simultaneously eigenstates of both operators, i.e., we can simultaneously measure them. Here we pick $\left|L^{2} ; L_{z}\right\rangle^{\prime}$'s and label them according to the eigenvalues of the operators.
Verify the pattern of angular momentum:

$$
|\ell(\ell+1) ; m\rangle
$$

with $m=-\ell,-\ell+1, \ldots, \ell$.
Show that

$$
L_{ \pm}=L_{x} \pm i L_{y}
$$

are the raising and lowering operators.
e) The spin operator also satisfies the commutation relation for angular momenta, i.e.

$$
\begin{aligned}
S & =\frac{\vec{\sigma}}{2} \\
{\left[S_{i}, S_{j}\right] } & =i \epsilon(i, j, k) S_{k} .
\end{aligned}
$$

What do we get for the simultaneous eigenstates $\left|S^{2} ; S_{z}\right\rangle$? Compare the results with $\left|L^{2} ; L_{z}\right\rangle$ and explain the differences.

Q. 3

Legendre Transform.
The Lagrangian $L(\dot{x})$ and the Hamiltonian $H(p)$ is related by a Legendre Transform:

$$
H=p \dot{x}-L
$$

satisfying the canonical relations:

$$
\begin{aligned}
p & =\frac{\partial L}{\partial \dot{x}} \\
\dot{x} & =\frac{\partial H}{\partial p} .
\end{aligned}
$$

a) Starting from the Hamiltonian of a free non-relativistic particle:

$$
H=\frac{p^{2}}{2 m}
$$

derive an expression for the Lagrangian $L(\dot{x})$.
b) Do the same for a relativistic particle:

$$
H=\sqrt{p^{2}+m^{2}}
$$

Q. 4

Gaussian integrals, generalized.
a) The Gaussian integral,

$$
\int_{-\infty}^{\infty} d x e^{-A x^{2}}=\sqrt{\frac{\pi}{A}}
$$

generalizes to

$$
\int d x_{1} d x_{2}, \ldots d x_{N} e^{-\vec{x}^{t} A \vec{x}}=\sqrt{\frac{\pi^{N}}{\operatorname{det} \mathrm{~A}}}
$$

Here A should be an $N \times N$, positive definite matrix, and

$$
\vec{x}^{t} A \vec{x}=\sum_{i, j} x_{i} x_{j} A_{i j}
$$

Write a program to verify the result for $\mathrm{N}=2,3,6$. Start with an A which is positive definite. (no diagonal please!)
b) Can you perform calculations for $N=10$ with your method of choice?

Q. 5

The Z's and the W's. (Method of auxiliary field)
a) Introducing an external field h to the Gaussian integral

$$
Z(h)=\int_{-\infty}^{\infty} d x e^{-A x^{2}+h x}
$$

Show that

$$
Z(h)=\sqrt{\frac{\pi}{A}} e^{\frac{h^{2}}{4 A}}
$$

b) If we define

$$
\left\langle x^{n}\right\rangle=\frac{\int_{-\infty}^{\infty} d x x^{n} e^{-A x^{2}}}{\int_{-\infty}^{\infty} d x e^{-A x^{2}}}
$$

show that

$$
\left\langle x^{n}\right\rangle=Z_{n}=\frac{1}{Z(0)} \partial_{h}^{n} Z(h)
$$

It is understood that we take $h \rightarrow 0$ at the end of the calculation. This allows us to obtain the various integrals by taking derivatives.
c) Compute (analytically and numerically): Z_{n} for $n=1,2, \ldots, 6$.
checks:

$$
\begin{aligned}
Z_{2} & =\frac{1}{2 A} \\
Z_{4} & =\frac{3}{4 A^{2}} .
\end{aligned}
$$

The general formula for $Z_{N}(N=2 k)$ is obviously

$$
Z_{2 k}=\frac{\operatorname{Gamma}(k+1 / 2)}{\operatorname{Gamma}(1 / 2)} \times \frac{1}{A^{k}} .
$$

Try to put $1 / 2,3 / 4,15 / 8,105 / 16$ in here.
d) The connected piece.

Knowing all possible $\left\langle x^{n}\right\rangle$'s can tell us many things (if not everything) about the system. But deep down we know the system is simple, i.e. there is a lot of redundancy in Z_{N} 's.

If we choose to describe the system with $W(h)$, defined as

$$
W(h)=\ln Z(h)
$$

And translate $W_{M}=\partial_{h}^{M} W(h)$ to and from Z_{N}, for example:

$$
\begin{aligned}
& W_{1}=Z_{1} \\
& W_{2}=Z_{2}-Z_{1}^{2} \\
& W_{3}=Z_{3}-3 Z_{1} Z_{2}+2 Z_{1}^{3} \\
& W_{4}=Z_{4}-4 Z_{1} Z_{3}-3 Z_{2}^{2}+12 Z_{1}^{2} Z_{2}-6 Z_{1}^{4}
\end{aligned}
$$

(can you do more? and how to go from Z to W ?)
In the language of W_{N}, the system is simple:

$$
W(h)=\frac{h^{2}}{4 A} .
$$

and hence we have only W_{1}, W_{2}, and

$$
W_{N>2}=0
$$

in this Gaussian system.
Verify now

$$
\begin{aligned}
& Z_{2}=W_{2}=\frac{1}{2 A} \\
& Z_{4}=3 W_{2}^{2}=\frac{3}{4 A^{2}}
\end{aligned}
$$

This exercise brings us dangerously close to field theory: In the language of field theory, $Z(h)$ is called a generator for Green's function, and $W(h)$ is called the generator for connected Green's function. In particular, W_{2} is almost like a propagator.

