HW3 due 15/12/2023

(+2 points for timely submission)

Q. 1

Numerical integration with random distribution.
a) Compute the value of π in the following manner:

Perform N trials of this task: select two random numbers in the range of $0: 1$, accept the pairs if the sum of their square is smaller than 1.0. Finally, evaluate

$$
A=\frac{N_{\text {accepted }}}{N_{\text {trials }}}
$$

What is the expected result?
b) Generate a non-uniform distribution of random number $\mathrm{x}(N>35000)$ in the range of $0.0: 4.0$ according to the distribution

$$
\rho(x)=e^{x}
$$

Plot a normalized histogram H of your collection of x, and verify that it follows the distribution

$$
H=\rho(x) / \text { norm }
$$

where

$$
\operatorname{norm}=\int_{0}^{4} d x \rho(x)
$$

c) Use the random collection to compute an integral, i.e.,

$$
\frac{1}{N} \sum \tilde{f}(x) \approx \frac{\int d x \tilde{f}(x) \rho(x)}{\int d x \rho(x)}
$$

Choose, e.g. $\tilde{f}(x)=e^{-2 x}$ and verify that

$$
\frac{\text { norm }}{N} \sum \tilde{f}(x) \approx \int_{0}^{4} d x e^{-x}
$$

d) What do we get when we choose $\tilde{f}=\rho^{-1}$? Compute the result.

Q. 2

If we randomly pick 2 points in an N -dim cube, what would be the average distance? (Take box size to be 1.0 for simplicity.)
a) For 1D, the analytic solution is given by

$$
\frac{\int d x_{1} d x_{2}\left|x_{1}-x_{2}\right|}{\int d x_{1} \int d x_{2}}
$$

Compute the integral. (ans. 1/3) (OMG!)
Verify this result by random sampling.
b) Compute the results for $\mathrm{N}=2$ to 10 . (List them in a table.)

Q. 3

Memorize the Gaussian integral formula to pass the QM exam!
-- advice from my tutor (when I was an undergraduate)
Gaussian integrals, keep coming back for more.
a) The Gaussian integral, in the presence of an auxiliary field h ,

$$
Z(h)=\int_{-\infty}^{\infty} d x e^{-A x^{2}+h x}=\sqrt{\frac{\pi}{A}} e^{\frac{h^{2}}{4 A}}
$$

generalizes to

$$
Z(\vec{h})=\int d x_{1} d x_{2}, \ldots d x_{N} e^{-\vec{x}^{t} A \vec{x}+\vec{h}^{t} \vec{x}}=\sqrt{\frac{\pi^{N}}{\operatorname{det} \mathrm{~A}}} e^{\frac{1}{4} \vec{h}^{t} A^{-1} \vec{h}}
$$

Here A is an $N \times N$, positive definite, and symmetric matrix. Write a program to verify the result for $\mathrm{N}=2,3,6$.
b) Show that

$$
\frac{1}{Z(0)} \frac{\partial^{2} Z(\vec{h})}{\partial h_{i} \partial h_{j}}=\left\langle x_{i} x_{j}\right\rangle=\frac{1}{2} A^{-1}[i, j] .
$$

Again, it is understood that we take $\vec{h} \rightarrow \overrightarrow{0}$ in the end.
c) Numerically demonstrates the following at $\mathrm{N}=8$.

$$
\begin{aligned}
\left\langle x_{1} x_{2}\right\rangle & =\frac{1}{2} A^{-1}[1,2] \\
\left\langle x_{1} x_{2} x_{3} x_{4}\right\rangle & =\left\langle x_{1} x_{2}\right\rangle\left\langle x_{3} x_{4}\right\rangle+\text { permutations. }
\end{aligned}
$$

These are called N -point functions in field theory. 2-point function is just the propagator. As expected the higher ones are more difficult to compute.

Q. 4

The Vandermonde matrix naturally arises in approximating a function using a polynomial:

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{N-1} x^{N-1} .
$$

a) By sampling the functions at N distinct points, show that the coefficients a_{n} 's satisfy

$$
V\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\cdots \\
a_{N-1}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
\cdots \\
f\left(x_{N-1}\right)
\end{array}\right]
$$

where

$$
V=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{N-1} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{N-1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{N-1} \\
& & \ldots & & \\
1 & x_{N-1} & x_{N-1}^{2} & \ldots & x_{N-1}^{N-1}
\end{array}\right]
$$

b) Write a program to interpolate the function based on this method:

$$
f(x)=\frac{1}{1+x^{2}}
$$

Choose e.g. $\mathrm{N}=20$ points in the interval $-2: 2$.
c) Take the complex-step derivative on $f(x)$ and its interpolated version. Plot and compare the results.

Q. 5

Derivative and Fourier Transform.
a) Obtain the analytic expression of $\tilde{f}(k)$

$$
\tilde{f}(k)=\int_{-\infty}^{\infty} d x e^{-x^{2}} e^{-i k x}
$$

Ans: $\tilde{f}(k)=\sqrt{\pi} e^{-k^{2} / 4}$.
b) This means $f(x)=e^{-x^{2}}$ and $\tilde{f}(k)=\sqrt{\pi} e^{-k^{2} / 4}$ is a pair of Fourier transform. Verify this numerically, i.e. compute

$$
\begin{aligned}
& f_{1}(k)=\int_{-\infty}^{\infty} d x e^{-i k x} f(x) \\
& f_{2}(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} \tilde{f}(k)
\end{aligned}
$$

and compare with known results.
Can your code handle transformation back to the x -space based on the numerical k-space result? I.e.

$$
f_{2 n u m}(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} f_{1}(k)
$$

c) Compute

$$
g(x)=\int_{-\infty}^{\infty} \frac{d k}{2 \pi} e^{i k x} \times(i k) \times \tilde{f}(k)
$$

Show that $g(x)=f^{\prime}(x)$. Verify this numerically.
d) Compute higher order derivatives this way (i.e. via Fourier transform) for $n=2,3,4$. Compare with the exact results.

