HW4 due 05/01/2024

(+2 points for handing in on time)

Q. 1

a) Prove the rotation formula of Pauli matrices:

$$
D^{-1} \vec{\sigma} D=\cos \theta \vec{\sigma}+(1-\cos \theta)(\hat{n} \cdot \vec{\sigma}) \hat{n}+\sin \theta \hat{n} \times \sigma
$$

where

$$
D=e^{-i \frac{1}{2} \theta(\hat{n} \cdot \vec{\sigma})}
$$

and \hat{n} is a unit (3D) vector.
b) Pick $\hat{n}=[0,0,1]$, work out the analytic result and verify numerically.

Q. 2

Story of a 2Der.
A smart physicist living in a 2D world has just discovered quantum mechanics.
She writes down the operators she knows:

$$
\begin{aligned}
\vec{x} & =[x, y] \\
p_{x} & \rightarrow-i \partial_{x} \\
p_{y} & \rightarrow-i \partial_{y},
\end{aligned}
$$

last, but not least, an orbital angular momentum operator

$$
L=-i\left(x \partial_{y}-y \partial_{x}\right)
$$

a) Verify the following commutation relations

$$
\begin{aligned}
& {\left[L, p_{x}\right]=i p_{y}} \\
& {\left[L, p_{y}\right]=-i p_{x}}
\end{aligned}
$$

b) Show that $T_{x}\left(h_{x}\right)=e^{-i h_{x} p_{x}}$ is the translation operator, i.e.,

$$
T_{x}^{-1} x T_{x}=x+h_{x},
$$

and acting on a function in x -space like

$$
\langle x| T_{x}\left(h_{x}\right)|f\rangle \rightarrow e^{-h_{x} \partial_{x}} f(x)=f\left(x-h_{x}\right)
$$

c) Show that $D(\phi)=e^{-i \phi L}$ generates a rotation, i.e. (active rotation convention)

$$
\begin{aligned}
D^{-1} \vec{x} D & =R \vec{x} \\
D^{-1} \vec{p} D & =R \vec{p}
\end{aligned}
$$

with

$$
R(\phi)=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

hint: use the relation

$$
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\ldots
$$

d) Verify the matrix representation for L reads

$$
L \rightarrow i \frac{\partial}{\partial \phi} R=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

(derivative evaluated at $\phi \rightarrow 0$)
e) While it is possible to write the generator of rotation as a matrix, it is NOT possible to do so for translation. Why is that?
f) You, being a student living in a 3D world, want to help the poor 2Der. You tell her that you can see beyond 2D and advise her to write R as R_{3} :

$$
R_{3} \rightarrow\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and the translation operator T like this

$$
T\left(h_{x}, h_{y}\right) \rightarrow\left[\begin{array}{ccc}
1 & 0 & h_{x} \\
0 & 1 & h_{y} \\
0 & 0 & 1
\end{array}\right]
$$

But all her vector $[\mathrm{x}, \mathrm{y}]$ should become $[\mathrm{x}, \mathrm{y}, 1]$.
Demonstrate how the translation operator work. Find the generators and verify the commutation relations

$$
\begin{aligned}
& {\left[L, p_{x}\right]=i p_{y}} \\
& {\left[L, p_{y}\right]=-i p_{x}}
\end{aligned}
$$

now as matrix relations, are satisfied.
g) Verify (with the 3D matrix representation) the relations:

$$
\begin{gathered}
R_{3}^{-1} p_{x} R_{3}=\cos (\phi) p_{x}-\sin (\phi) p_{y} \\
R_{3}^{-1} p_{y} R_{3}=\cos (\phi) p_{y}+\sin (\phi) p_{x}
\end{gathered}
$$

In fact we 3Ders have the same problem as the 2Der: translation in 4 D is NOT a linear transformation. This takes us from Lorentz group to Poincare group, and we need 5 dimensional matrix to handle that.

Q. 3 Numerical solution to the Schroedinger Equation.

Solve the Schroedinger Equation numerically and compute the energy spectrum (and the wavefunctions) of the Morse Potential:

$$
V(x)=\frac{\lambda^{2}}{2 m}\left(e^{-2 x}-2 * e^{-x}\right)
$$

- a) (choose e.g. $m=1, \lambda=6$) Compute the ground state and the first 4 excited states. Check with the analytic result for the energy levels:

$$
E(n)=-(\lambda-1 / 2-n)^{2} \frac{1}{2 m}
$$

- b) Approximate the Morse potential with a harmonic potential. Check that their ground states agree. What about the 1st excited state?

Q. 4 Numerical study of 3D Ising Model

- a) Write a program to solve the 3D Ising Model. What is the critical temperature you get?
- b) Plot the average spin and the spin susceptibility as functions of temperature.

