HW5 due 26/01/2024

(+2 points for handing in on time)

Q. 1

Consider the function of iterated exponential

$$
h(x)=x^{x^{x}}
$$

a) The function $h(x)$ admits a recursive definition via

$$
h(x)=x^{h(x)}
$$

Write a program to implement such a construction.
b) Another way is construct $h(x)$ is by inverting the relation

$$
x(h)=e^{\frac{1}{h} \ln h} .
$$

Plot h versus x using this and the recursive construction. Compare the results. Note in particular the endpoint at $\left(x=e^{1 / e}, h=e\right)$.
c) What is the result of i^{i} ? What about $i^{i^{i}}$? Check with numerical construction.
d) Iteratively construct $h(i)$ and plot the sequence of complex numbers in the complex plane. What a beautiful pattern! Merry Xmas and Happy New Year!
e) The Lambert function $W(x)$ is defined by the relation

$$
W(x) e^{W(x)}=x
$$

Study (and plot) the function $x(W)$, show that the minimum is located at

$$
\begin{aligned}
W & =-1 \\
x & =-\frac{1}{e}
\end{aligned}
$$

Show that

$$
h(x)=e^{-W(-\ln x)} .
$$

Explain the endpoint of $h(x)$ identified.

Q. 2 Matsubara sum.

a) Study (again!) the basic integral

$$
\int_{-\infty}^{\infty} \frac{d p_{4}}{2 \pi} \frac{1}{p_{4}^{2}+\omega^{2}}=\frac{1}{2 \omega} .
$$

Consider

$$
\begin{aligned}
p_{4} & =n \Delta p_{4} \\
\Delta p_{4} & =\frac{2 \pi}{L_{4}}
\end{aligned}
$$

where $n=-N_{\max },-N_{\max }+1, \ldots, N_{\max }$ and convert the integral into a Riemann sum

$$
\frac{1}{L_{4}} \sum_{n=-\infty}^{\infty} \frac{1}{\left(\Delta p_{4}\right)^{2} n^{2}+\omega^{2}}
$$

Numerically evaluate the sum (for large enough $N_{\max }$ and small enough Δp_{4}) and verify the integral.
b) The case of a finite L_{4} is an important result in finite temperature field theory: $L_{4} \rightarrow \beta=1 / T$ is the inverse temperature, $p_{4} \rightarrow \omega_{n}=\frac{2 \pi}{\beta} n$ are the Matsubara frequencies (for Bosons), and the sum of interest reads

$$
G(\beta, \omega)=\frac{1}{\beta} \sum_{n=-\infty}^{\infty} \frac{1}{\omega_{n}^{2}+\omega^{2}} .
$$

The analytic result is

$$
G(\beta, \omega)=\frac{1}{2 \omega} \operatorname{coth}\left(\frac{\beta \omega}{2}\right) .
$$

To derive this result, we can use the Euler's product formula for $\sin (x)$

$$
\sin (x)=x \prod_{n=1}^{\infty}\left(1-\frac{x^{2}}{n^{2} \pi^{2}}\right) .
$$

Make sense of the sine formula by numerically computing the RHS (for a large $N_{\max }$) and plotting the two functions.
c) Show that

$$
\sin (i x)=i \sinh (x)=i \frac{e^{x}-e^{-x}}{2}
$$

and obtain an analogous product formula for $\sinh (x)$. The result is

$$
\sinh (x)=x \prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2} \pi^{2}}\right)
$$

d) Take the logarithm on both sides and reach

$$
\ln \sinh (x)=\ln x+\sum_{n=1}^{\infty} \ln \left(1+\frac{x^{2}}{n^{2} \pi^{2}}\right)
$$

Now take the derivative (with respect to x) on both sides and show that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{n^{2} \pi^{2}+x^{2}}=\frac{1}{x} \operatorname{coth}(x)
$$

e) Finish the job to show that

$$
G(\beta, \omega)=\frac{1}{2 \omega} \operatorname{coth}\left(\frac{\beta \omega}{2}\right)
$$

What is the $\beta \rightarrow \infty$ limit? Explain.

Q. 3

a) From $S=e^{2 i \delta}=1+i t$, show that $2 \operatorname{Im} t=|t|^{2}$.
b) Given the scattering amplitude for a resonant process can be parametrized as

$$
f(E) \propto \frac{1}{E-E_{R}+i \frac{\gamma}{2}}
$$

show that the resonant phase shift $\delta_{R}(E)$ satisfies

$$
\tan \delta_{R}(E)=\frac{-\gamma / 2}{E-E_{R}}
$$

Plot the phase shift function with some reasonable values of the parameters.

Q. 4

Derive the key results in the scattering theory:
a) The Green's function: show that

$$
\begin{aligned}
G_{E}^{0}(x) & =\int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{x}} \frac{1}{E-\frac{q^{2}}{2 m_{R}}+i \delta} \\
& =\frac{1}{2 \pi^{2} r} \int_{0}^{\infty} d q \sin (q r) \frac{q}{E-\frac{q^{2}}{2 m_{R}}+i \delta} \\
& =-2 m_{R} \times \frac{1}{4 \pi r} e^{+i p r}
\end{aligned}
$$

b) Show that the G_{E}^{0} satisfies

$$
\left(E-\hat{H}_{0}\right) G_{E}^{0}\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}\right)=\delta^{(3)}\left(\overrightarrow{x_{1}}-\overrightarrow{x_{2}}\right)
$$

where $\hat{H}_{0}=-\frac{\nabla^{2}}{2 m_{R}}$.
c) The full Green's function G_{E} satisfies

$$
(E-\hat{H}) G_{E}\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}\right)=\delta^{(3)}\left(\overrightarrow{x_{1}}-\overrightarrow{x_{2}}\right)
$$

where $\hat{H}=\hat{H}_{0}+\hat{V}$. Derive the relation between G_{E} and G_{E}^{0}.
d) What about the full wavefunction ψ and the scattering amplitude f ? How can they be extracted from G^{0} ?

Q. 5

a) Numerically compute the S-wave phase shift $\delta(E)$ for a finite barrier:

$$
V(r)=V_{0},
$$

if $x<R$, otherwise zero. You can take $m_{R}=1, V_{0}=2.0, R=1.5$. Plot the result in a suitable energy range: e.g. 0.1:14.0.
b) The effective spectral function

$$
\Delta A(E)=2 \frac{d}{d E} \delta(E)
$$

corresponds to the change of the density of states due to interaction. Compute $\Delta A(E)$ for the finite barrier problem.

