mini-Projects

presentations

- summarize key physics points in reading.
- 15 min presentation
 - 5-10 slides: demonstrating an intro. for basic theory / method, and the key results
 - numerical demonstration: in the form of a problem set (of course you need to solve it!)
- numerical codes

topics

Choose a topic from below or form your own! Here are some suggestions (and guiding questions)

- Van der Waals parametrization of phase diagram
 - any Stat. Mech. Textbook, e.g. Kerson Huang and Pathria
 - molecules
 - Qs:
 - * how attractive and repulsive forces affect the shape of phase diagram ?
 - * how Maxwell construction works?
 - * relate the Van der Waals parameters to those of a microscopic model, e.g. Walecka model.
- Ising model
 - Kogut
 - intro. notes
 - Qs:
 - * concept of duality: low and high temperature expansions
 - * order parameter and susceptibility
 - * how the phase transition is modified by higher pairing forces
 - $\ast\,$ vortices and other special objects
 - * hysterysis and how it evolves with temperature
 - * beyond nearest-neighbor forces
- coherent states
 - susy qm (first 2 chapters)
 - notes from Nicholas Wheeler
 - Qs:

- * understand how the ladder operator works
- * what are the key features of a coherent state?
- constituent quark model
 - quark model
 - Qs: how to understand the spectrum of charmonium states in the PDG: n, J, L, ? - attempt to fit the low lying states. - explore the effect of spin-orbit couplings.
- Understanding resonances.
 - resonances
 - kinematics
 - how (intermediate) resonances show up in a Dalitz plot.
 - how dynamics are affecting the distributions.
 - coupled-channel models.