
first class demo
python is slow
import numpy as np

def f(x, y, z):
return np.exp(-x**2-y**2-z**2)

def main():

N = 500
xv = np.linspace(0.0, 2.0, N)
dx = xv[2]-xv[1]

ans = 0.0
for x1 in xv:

for x2 in xv:
for x3 in xv:

ans += f(x1, x2, x3) * dx**3
print(ans)
return ans

main()

VS

function f(x, y, z)
ret1 = exp(-xˆ2-yˆ2-zˆ2)
return ret1

end

function main()

N = 500
xv = range(0.0, 2.0, length=N)
dx = xv[2]-xv[1]

ret = 0.0
for x1 in xv, x2 in xv, x3 in xv

ret += exp(-x1ˆ2-x2ˆ2-x3ˆ2) * dxˆ3
end

print(ret)
return ret

end

1

main()

The output:

time julia test2.jl

0.6910931690128204
__
Executed in 937.50 millis fish external

usr time 1.88 secs 0.22 millis 1.88 secs
sys time 0.89 secs 1.03 millis 0.89 secs

time python3 test2.py

0.6910931690128224

__
Executed in 80.36 secs fish external

usr time 81.11 secs 221.00 micros 81.11 secs
sys time 1.24 secs 971.00 micros 1.24 secs

side effects
xarr = [1, 2, 3]
yarr = [2, 4, 6]

a = xarr
a += yarr

In python (but not in Julia), this would have modified xarr. But matrix side
effect is still there:

Amat = [1 2 3; 4 5 6]
Bmat = Amat
Bmat[:,1] = [7 11]

what would Bmat be? What happens to Amat?

logistic curve
see class notes

2

	first class demo
	python is slow
	side effects
	logistic curve

