first class demo

python is slow

import numpy as np

def f(x, y, 2z):
return np.exp(—x**2-y**2-z**2)

def main():

N = 500
xv = np.linspace(0.0, 2.0, N)
dx = xv[2]-xv[1]

ans = 0.0
for x1 in xv:
for x2 in xv:
for x3 in xv:
ans += f(x1, x2, x3) * dx**3
print(ans)
return ans

main()

VS

function f(x, y, 2)
retl = exp(-x"2-y " 2-z"2)
return retl

end

function main()

N = 500
xv = range(0.0, 2.0, length=N)
dx = xv[2]-xv[1]

ret = 0.0
for x1 in xv, x2 in xv, x3 in xVv

ret += exp(-x172-x272-x372) * dx"3
end

print(ret)
return ret
end

main()

The output:

time julia test2.jl

0.6910931690128204

Executed in 937.50 millis fish external
usr time 1.88 secs 0.22 millis 1.88 secs
sys time 0.89 secs 1.03 millis 0.89 secs

time python3 test2.py

0.6910931690128224

Executed in 80.36 secs fish external
usr time 81.11 secs 221.00 micros 81.11 secs
sys time 1.24 secs 971.00 micros 1.24 secs

side effects
xarr = [1, 2, 3]
yarr = [2, 4, 6]
a = xarr

a += yarr

In python (but not in Julia), this would have modified xarr. But matrix side
effect is still there:

Amat = [1 2 3; 4 5 6]
Bmat = Amat
Bmat[:,1] = [7 11]

what would Bmat be? What happens to Amat?

logistic curve

see class notes

	first class demo
	python is slow
	side effects
	logistic curve

