Julia: tips and tricks
New to Julia? Look at the cheatsheet
Veteran looking for challenges? check it out
previous edition of NumQM
python reminder
many ways to loop
for i1 in 1:N1, i2 in 1:N2
# do something for mat[i1, i2]
end
# col. major, faster
for i2 in 1:N2, i1 in 1:N1
# do something for mat[i1, i2]
end
sites = Base.product(1:N1, 1:N2)
for site in sites
i1, i2 = site
# do something
end
launch Julia from terminal in MacOS
e.g. for Julia-1.9, link it to /usr/local/bin/ by
ln -s /Applications/Julia-1.9.app/Contents/Resources/julia/bin/julia /usr/local/bin/julia
no more side effect
try the following code
xarr = [1, 2, 3]
yarr = [2, 4, 6]
a = xarr
a += yarr
In python, this would have modified xarr. In Julia this is not the case.
matrix side effect
try the following code
Amat = [1 2 3; 4 5 6]
Bmat = Amat
Bmat[:,1] = [7 11]
# what would Bmat be? And more importantly, what happens to Amat?
In Julia (and may be python also?), Amat would be modified also.
Trick to avoid that
Amat = [[1, -1, 0, 0] [1, 1, -2, 0] [1, 1, 1, -3]]
# avoid side effect:
Bmat = I * Amat
# also work
# Bmat = 1 * Amat
# Bmat = copy(Amat)
Bmat[:,1] = [2, 2, 2, 2]
modern programming feature
list comprehension array construction iterator, generator
style guide
input / output files
-
use this to handle numerical data file: delimited files
-
demonstration: (you may want to write your own wrapper)
# basic example
using DelimitedFiles
# to write
f(x, y) = x * y
data = []
for i1 = 1:10
x = i1
y = rand()
push!(data, [x, y, f(x, y)]') # entry as row
end
data = vcat(data...) # turn data into a matrix
filename = "result.dat"
open(filename, "w") do f
Base.write(f, "# some captions \n")
writedlm(f, data)
end
# to read, comments like #... are ignored
file = filename
data2 = readdlm(file, comments = true)
data2 == data
# to fetch, e.g. xvec
xvec = data[:, 1]
optional arguments in function
# required, optional + sequential; optional keywords (arbitrary order)
function f(x, y = 2, z = 3; a = 4.0, b = 5.0)
ret = x + y + z^a + b
println([x, y, z, a, b])
return ret
end
f(1)
f(1, 10, b = 173, a = 77)
# need to put in y in to specify z
f(1, 2, 4, b = 173)
use ! to indicate function modifies its input.
function mvup!(xvec, d)
xvec[d] += 1
return nothing
end
reading user inputs from terminal
# string input
char_in = readline()
# integer / float input
i_in = parse(Int, readline())
f_in = parse(Float64, readline())
simple terminal menu
import REPL
using REPL.TerminalMenus
todo = ["task 1", "task 2", "task 3", "task 4"]
# form a menu
menu = RadioMenu(todo)
# ask for input from user
choice = request("Choose a task:", menu)
# further manipulation with choice
println("you choose: ", todo[choice])
interpolations
http://juliamath.github.io/Interpolations.jl/latest/convenience-construction/
run script from terminal
julia -e "using Pluto; Pluto.run()"
or
julia -e "using Pkg; Pkg.update()"
PyCall, PyPlot, SymPy packages
check the python3 path
which python3 | pbcopy
ENV["PYTHON"] = "/usr/local/bin/python3"
#then ]
build PyCall; add PyCall
do the same for IJulia, etc.
updating Julia in linux
wget https://julialang-s3.julialang.org/bin/linux/x64/1.9/julia-1.9.3-linux-x86_64.tar.gz
tar zvxf julia-1.9.3-linux-x86_64.tar.gz
then replace the folder and link.
JuliaFormatter
add JuliaFormatter open a julia session
format(".")
to format *.jl in the current directory.
format("./main.jl")
to format a particular file.
profiling
using Profile
using ProfileView
@profile somefunc(a, b)
Profile.print()
@profview somefunc(a, b)
# it will generate a plot
readline()